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1 INTRODUCTION

ABSTRACT

We catalog the 443 bright supernovae discovered by the All-Sky Automated Survey for
Supernovae (ASAS-SN) in 2018 — 2020 along with the 519 supernovae recovered by ASAS-
SN and 516 additional mpeqr < 18 mag supernovae missed by ASAS-SN. Our statistical
analysis focuses primarily on the 984 supernovae discovered or recovered in ASAS-SN g-band
observations. The complete sample of 2427 ASAS-SN supernovae includes earlier V-band
samples and unrecovered supernovae. For each supernova, we identify the host galaxy, its UV
to mid-IR photometry, and the offset of the supernova from the center of the host. Updated
light curves, redshifts, classifications, and host galaxy identifications supersede earlier results.
With the increase of the limiting magnitude to g < 18 mag, the ASAS-SN sample is roughly
complete up to M peqr = 16.7 mag and is 90% complete for mpeqr < 17.0 mag. This is an
increase from the V-band sample where it was roughly complete up to m peqx = 16.2 mag and
70% complete for m peqx < 17.0 mag.
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Shappee et al. 2014), the Zwicky Transient Facility (ZTF; Bellm
et al. 2019; Chen et al. 2020), and the Asteroid Terrestrial-impact

Over the past decade, an increasing number of surveys have sys-
tematically scanned the sky in search of supernovae and other tran-
sient events. The largest contributors for bright transient discover-
ies are the All-Sky Automated Survey for Supernovae (ASAS-SN!;
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Last Alert System (ATLAS; Heinze et al. 2018; Tonry et al. 2018).
Between 2014 and 2022, ASAS-SN was the only survey to ob-
serve the entire visible sky. ASAS-SN is limited to bright transients
(g < 18.5 mag), giving it lower discovery rates, but this allows high
spectroscopic completeness for its discoveries and provides tran-
sients that are relatively easy to study across the electromagnetic
spectrum.
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In addition to studying supernovae (SNe; e.g., Bose et al. 2018,
2019; Hoeflich et al. 2021; Chen et al. 2022), ASAS-SN obtains
data for a broad range of transients, multi-messenger searches, and
variable sources. For transients, these include tidal disruption events
(TDEs; e.g., Holoien et al. 2019b,¢, 2020, Hinkle et al. 2021, Payne
etal. 2022, recently), novae (e.g., Kawash et al. 2021b, 2022), dwarf
novae (e.g., Kawash et al. 2021a), and changing look or other active
galactic nuclei (AGN; e.g., Neustadt et al. 2020, Hinkle et al. 2022,
Holoien et al. 2022). There are multi-messenger searches associated
with both neutrino (e.g., IceCube Collaboration et al. 2018, Necker
etal.2022) and gravitational wave (e.g., de Jaeger et al. 2022) events.
ASAS-SN has produced the first all-sky, homogeneously classified
sample of variable stars (e.g., Jayasinghe et al. 2019, 2021) and is
working to expand it with the aid of citizen science (Christy et al.
2022). The astronomical community also makes considerable use
of the ASAS-SN photometry, particularly through the ASAS-SN
Sky Patrol (Kochanek et al. 2017).

Each of the robotic ASAS-SN units is hosted by Las Cumbres
Observatory (Brown et al. 2013) and consists of four 14-cm tele-
scopes, each with a field of view of 4.5 x 4.5 degrees. Starting in
2014, ASAS-SN operated units in both the Northern and Southern
hemispheres with one unit named Brutus, located on Haleakala in
Hawaii, and a second unit named Cassius, located at Cerro Tololo
in Chile. Each unit observed in the V-band with a limiting mag-
nitude of V ~ 17 mag (see Shappee et al. 2014). In 2017, ASAS-
SN expanded with three more units: Paczynski, also located at
Cerro Tololo; Leavitt, located at McDonald Observatory in Texas;
and Payne-Gaposchkin, located at Sutherland in South Africa, all
of which observe in the g-band and have limiting magnitudes of
g ~ 18.5 mag in optimal conditions. By the end of 2018, ASAS-SN
converted the initial two units to observe with g-band filters transi-
tioning ASAS-SN completely to g-band observations. ASAS-SN is
an untargeted survey and in good conditions, ASAS-SN can observe
the entire visible sky of approximately 30,000 square degrees in less
than one night (Shappee et al. 2014, Holoien et al. 2019a).

All of ASAS-SN’s observations are processed automatically
and searched in real-time. New discoveries are announced publicly
either upon first detection where there is no ambiguity, or after
follow-up imaging confirms an initially ambiguous source detec-
tion. ASAS-SN reports its discoveries to the Transient Name Server
(TNS?). Targets are spectroscopically confirmed by both the ASAS-
SN team and other groups. The untargeted design and high spectro-
scopic completeness make ASAS-SN ideal for population studies
of nearby SNe and their hosts (e.g., Brown et al. 2019; Desai et al.
in prep.).

This paper is the fifth in a series of ASAS-SN supernova cata-
logs and it spans the years 2018 to 2020. The previous catalogs are
presented in Holoien et al. (2017a,b,c, 2019a). We provide infor-
mation on all SNe discovered and recovered by ASAS-SN and their
hosts galaxies. By recovered SNe, we mean SNe discovered by a
group other than ASAS-SN that were later seen independently by the
ASAS-SN transient pipeline. Supernovae not discovered or recov-
ered by ASAS-SN are presented alongside recoveries with similar
data. We provide information for all bright SNe (m 4 < 18 mag)
gathered first from ASAS-SN data then external sources. The data
and analysis presented in this catalog are meant to supersede data
from ASAS-SN webpages, TNS, and The Astronomers Telegram
(ATels; %) relating to discovery and classification of SNe.
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In Section 2, we describe sources of the data for both ASAS-
SN SNe and the externally discovered SNe along with any updated
measurements and their host identifications. In Section 3, we discuss
statistics of the SNe and their hosts. In Section 4, we summarize and
discuss the uses of the catalog. Where needed, we use a standard flat
ACDM cosmology with Hy = 69.3 km s~} Mpc™!, Qp; = 0.29,
and Qp =0.71.

2 DATA SAMPLES

This section outlines the sources of the data for the supernovae and
their host galaxies. Tables 1 and 2 present data on SNe discovered
by ASAS-SN and other groups, and Tables 3 and 4 present data
on the hosts of the SNe discovered by ASAS-SN and other groups,
respectively.

2.1 The ASAS-SN Supernova Sample

Table 1 contains information for the 443 supernovae discovered by
ASAS-SN over the three years spanning 2018 January 1 to 2020 De-
cember 31. All discovery information regarding supernova names,
discovery dates, and host names were compiled through the ASAS-
SN website and TNS. The TNS discovery reports are cited in Ta-
ble 1. In addition to their ASAS-SN names, the table includes their
International Astronomical Union (IAU) names.

All ASAS-SN SNe with classification spectra have measured
redshifts. When the supernova has a host galaxy with a previously
measured redshift agreeing with the redshift of the supernova, the
redshift of the host is listed instead. We acquire these spectro-
scopic host redshifts from the NASA/IPAC Extragalactic Database
(NED)*. The redshift used for unclassified ASAS-SN SNe are their
host redshift if the identification of the host seems accurate.

Supernova classifications were primarily from TNS classifica-
tion reports or ATels in the instances where no TNS classification
reports could be found. These sources are cited in Table 1. Based
on these spectra, classifications also give the approximate age of
the supernova at discovery relative to its peak. Supernova classifi-
cations were generally based on either the Supernova Identification
code (SNID; Blondin & Tonry 2007) or the Generic Classification
Tool (GELATO?; Harutyunyan et al. 2008). Both packages com-
pare input spectra to template spectra to estimate the redshift, type,
and approximate age of the supernova. SNe discovered by ASAS-
SN that could not be classified or lacked classification spectra are
labeled as Type “unk”.

Updated redshifts and classifications are included where reex-
aminations of archival classification spectra disagree with previous
reports. These classification spectra are obtained from TNS and
the Weizmann Interactive Supernova data REPository (WISEREP;
Yaron & Gal-Yam 2012). ASASSN-20qc (AT 2020adgm) has been
updated from being typed as a CV to a Type IIn and ASASSN-18yy
(SN 2018hts) has an updated redshift. Reviewing the spectra of
ASASSN-18cl (AT 2018ts), we agree with Palmerio et al. (2018)
that it could be an AGN, a TDE, or a Type IIn, so we treat it as
having an unknown type (“‘unk”).

While ASAS-SN astrometry is generally better than 2’0 for
bright sources, it does not perform as well for faint sources given the
7”0 pixel scale. More precise astrometry is acquired using follow-up

4 https://ned.ipac.caltech.edu/
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images of the ASAS-SN supernova and the astrometry.net package
(Barron et al. 2008; Lang et al. 2010). We use IraF (Tody 1986)
to measure centroid positions for each supernova. This technique
results in positional errors of <170. ASAS-SN collects these follow-
up images using the Las Cumbres Observatory 1-m telescopes or
with the aid of amateur collaborators working with the ASAS-SN
team. While we give preliminary coordinates to TNS and their
discovery reports, we announce coordinates measured by follow-
up images in discovery ATels, and we report these coordinates in
Table 1. Offsets between SNe and the centers of their host galaxies
are calculated using host positions, primarily from NED.

The reported host of the Type Ia supernova ASASSN-18nt
(AT 2018ctv) is the cluster Abell 0194. The closest galaxies to it are
Minkowski’s Object and NGC 0541 with offsets of 72”’and 124"/,
but it is likely an intracluster supernova rather than being associated
with either galaxy.

For each supernova, we produced new image subtracted light
curves in magnitudes using a reference image excluding any epoch
with significant emission from the supernova. We fit the region near
its peak with a parabola to determine the peak magnitude. If there
are too few detections or the peak region was not observed, the
brightest observed magnitude is reported. Holoien et al. (2017a,b,c,
2019a) reported the brighter of the brightest observed magnitude
and the parabolic fit, but it is clear from Desai et al. (in prep.) that
the use of the brightest observed magnitude systematically biases
the peak magnitudes to be too bright with a median difference of
~ 0.3 mag. The peak magnitudes are reported in Table 1 separately
for the V-band and g-band although there were V-band observations
only in 2018.

2.2 The Non-ASAS-SN Supernova Sample

Table 2 contains all SNe discovered by groups other than ASAS-SN
from 2018 to 2020. These external groups include both professional
and amateur supernova searches. We include SNe only if they are
spectroscopically confirmed and have peak magnitudes mpeqr <
18 mag. We based the list on the “Latest Supernovae” website®
created by D. W. Bishop (Gal-Yam et al. 2013). This site assembles
sources, including ATels and TNS, to build an annual database
of SNe. TNS is used to verify data from the “Latest Supernovae”
site rather than as the primary source because some supernova
discoverers do not participate in TNS.

Supernova names, IAU names, discovery dates, coordinates,
host galaxy names, peak reported magnitudes, spectral types, red-
shifts, and discovery sources for each SNe included in the Non-
ASAS-SN sample were acquired from the Latest Supernova web-
site. We used NED to gather host galaxy coordinates to calculate
host offsets from angular separation and host redshifts for more ac-
curate measurements. For the majority of SNe without a reported
host galaxy, we used NED to located the nearest possible host. When
the supernova still lacked a possible host, we used the Pan-STARRS
DR2 (Chambers et al. 2016) catalog to identity possible hosts and
their coordinates.

The Latest Supernova website reports maximum magnitudes
detected in various filters where this maximum magnitude does not
necessarily correspond to the peak of the supernova. To better com-
pare supernova of the ASAS-SN and Non-ASAS-SN samples, we
again produce host-subtracted light curves from the ASAS-SN data.
We used parabolic fits to estimate the peak magnitude and report

6 http://www.rochesterastronomy.org/snimages/
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either this value or the peak measured value if the parabolic fits can-
not be done in Table 2. This was only done for the SNe detected by
ASAS-SN. This includes all SNe recovered by ASAS-SN and some
of the non-recovered SNe. For ZTF20abqvsik (SN 2020rcq), one of
the brightest SNe discovered in 2020, our light curves do not have
any data until 3 months after discovery with a g-band magnitude
of 15.2 mag. The maximum magnitude detected for this supernova
is given as 11.8 mag in the C-band by Giancarlo Cortini (“Latest
Supernovae”). The ZTF g-band light curves for this period are not
public.

For several Non-ASAS-SN SNe that lacked or had question-
able redshifts, we used publicly available spectra from TNS and
WISEREP to check the classification and redshift. We reclassi-
fied SNe ZTF19aczlqcd and MASTER OT J000256.70+323252.3
(also known as SN 2019wzz and SN 2019¢l) as an M-dwarf
flare and a CV respectively. We have updated redshifts for AT-
LAS20bfpj (SN 2020aagy), ATLAS20rzv (SN 2020nxt), Gaia20ffa
(SN 2020z1z), MASTER OT J005402.48+471051.7 (SN 2018cgq),
and ZTF18aavwurv (SN 2020pnn). Additionally, we concur with
David Bishop of “Latest Supernovae” that AT 2021ekf and the
classified supernova 10LYSEnhv are the same object. They were
discovered nearly simultaneously, and they have a reported coordi-
nate offset of only 07'05.

We report the discovery group for each supernova in Table 2.
Discoveries by non-professional surveys are labeled as “Amateurs”.
The names of the amateurs are included in the complete machine-
readable version of Table 2. Following the pattern seen in the previ-
ous ASAS-SN catalog (Holoien et al. 2019a), amateur discoveries
have diminished as the professional surveys have increased in scale.
This decrease and the extension to a fainter limiting magnitude
dropped amateurs to S5th in number of supernova discoveries in
2018-2020 compared to 3rd in 2017.

Table 2 notes if a Non-ASAS-SN supernova was recovered by
ASAS-SN during standard operations. These recovered SNe can be
used in any statistical analysis of the ASAS-SN SNe. The missed
SNe provide information on the completeness of ASAS-SN.

2.3 The Host Galaxy Samples

In Tables 3 and 4, we provide the Galactic extinction estimates to-
wards the host galaxy and host magnitudes from the near-ultraviolet
(NUV) through infrared (IR). The Galactic extinctions (Ay ) are
from Schlafly & Finkbeiner (2011) using the host coordinates from
NED. We collected NUV magnitudes from the Galaxy Evolution
Explorer (Galex; Morrissey et al. 2007) All-Sky Imaging Survey
(AIS), u magnitudes from the Sloan Digital Sky Survey (SDSS)
Data Release 14 (DR14; SDSS Collaboration et al. 2016), grizy
magnitudes from the Panoramic Survey Telescope & Rapid Re-
sponse System (Pan-STARRS; Chambers et al. 2016), NIR JHKg
magnitudes from the Two-Micron All Sky Survey (2MASS; Skrut-
skie et al. 2006), and mid-IR W1 and W2 magnitudes from the
Wide-field Infrared Survey Explorer (AIIWISE; Wright et al. 2010).

We use J and H band upper limits corresponding to the faintest
host detection in our combined 2014 — 2020 sample (J/ > 17.0 mag,
H > 16.4 mag) for hosts not detected by 2MASS. Where a host was
detected in WISE W1 data but not in 2MASS Kg data, we added
the mean Kg — W1 offset from the total sample of host galaxies to
the WISE W1 magnitude to estimate a Kg magnitude. Analyzing
the 1730 host galaxies with both Kg and W1 magnitudes, we have
an average offset of to —0.43 mag with a dispersion of 0.04 mag
and a standard error of 0.001 mag. Host galaxies detected in neither
2MASS nor WISE are given an upper limit of Kg > 15.6 mag,
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Figure 1. Number of bright SNe discovered each month from 2012 through 2020. Supernovae discovered by ASAS-SN are red, those recovered by ASAS-SN
are yellow, and those not discovered or recovered by ASAS-SN (or were found prior to ASAS-SN) are blue. Important milestones are labeled. The dashed
lines are the median number of SNe discovered each month for 2010 to 2012 (V' < 17 mag, pink), 2014 May to 2017 (V < 17 mag, cyan), and 2018 to 2020

(g < 18 mag, beige).

matching the faintest Kg magnitude seen from a host magnitude in
the total sample.

3 ANALYSIS OF THE SAMPLE

Between 2014 May 01, when ASAS-SN began operating in both
hemispheres, and 2020 December 31, 2427 bright SNe were discov-
ered. This total excludes SNe with mpeqx > 17.0 mag discovered
prior to 2018 and m ¢4k > 18.0 mag after 2018, as well as unclas-
sified ASAS-SN discoveries. Figure 1 displays the distribution of
bright SNe discovered each month from 2012 to 2020. Milestones in
the history of ASAS-SN are marked. ASAS-SN was originally built
because it appeared that local, bright supernova samples were sig-
nificantly incomplete. The doubling of the discovery rates between
2012 to 2014 and 2014 to 2018 makes it clear that the problem was
real.

After ASAS-SN transitioned to using g-band, it made sense
to use a limiting magnitude of g = 18 mag for Figure 1. While
much of the doubling in discovery rate is due to switching to the
fainter limit, redoing the rates of the earlier time period with this
limit would not lead to a similar doubling prior to 2018. The advent
of ZTF and ATLAS in this period resulted in a larger percentage
of bright SNe being discovered outside of ASAS-SN. Then in early
2020, ASAS-SN’s discovery rate dropped dramatically due to the
closures caused by the COVID-19 pandemic. Despite this, ASAS-
SN continued to discover or recover about half to two-thirds of

bright SNe. The existence of the three partially overlapping surveys
ensures that the bright supernova samples are now highly complete.

Over the 2018 to 2020 period, ASAS-SN discovered 443 SNe
and recovered 519 other SNe for a total statistical sample of 1706
SNe discovered or recovered ASAS-SN SNe from 2014 May to
2020. Among the external discoveries in the recent period, other
professional surveys discovered 952 SNe and amateurs discovered
83 SNe. While ASAS-SN remained the top contributor of bright
SNe, ATLAS, ZTF, and Gaia all now surpass amateurs in discover-
ies of bright SNe where only ASAS-SN and ATLAS did so in 2017
(Holoien et al. 2019a).

Figure 2 shows the breakdown of supernova types into their
basic classes of Type la, Type II and Type Ib/Ic where subclasses
such as IIb and IIn are included as Type II. This is done as an arbi-
trary abbreviation rather than an assumption of the physics behind
these phenomena. Superluminous SNe (9) are not included nor are 4
incompletely typed SNe (3 Type I SNe and 1 “young” core-collapse
supernova) and 142 untyped ASAS-SN SNe. The ratio of untyped
to typed SNe was greatest in 2020 due to the closures caused by
the COVID-19 pandemic. Compared to the type distribution of all
g < 18 mag SNe, the ASAS-SN discoveries are biased towards
Type Ia SNe and the amateur discoveries are biased towards core-
collapse SNe. As we discuss below, amateur searches are biased
towards luminous star forming galaxies, leading to a bias towards
finding core-collapse SNe. They are effectively all-sky like ASAS-
SN if biased to the galaxies observed, and the rapid rise times of
core-collapse SNe also reduces the ability of deeper surveys to iden-
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Figure 2. Left Panel: Breakdown by type of the supernova discoveries between 2018 January 1 and 2020 December 31 for those found by ASAS-SN (Upper
Left), other professional surveys (Upper Right), amateurs (Lower Left), and all recent SNe (Lower Right). We exclude 9 superluminous SNe, 4 incompletely
typed SNe, and 142 untyped SNe. Sub-classes are included with their “parent class” (e.g., Type IIn SNe are counted as Type II SNe).

tify SNe before they approach their peak brightness. The combined
distributions of the ASAS-SN and amateur discoveries is very sim-
ilar to the distribution of all SNe in the new sample. The other
professional surveys are more dominated by fainter SNe and do not
show the type trade off with the amateurs. The overall distributions
are similar to the “ideal magnitude-limited sample” of Li et al.
(2011a), with 79.2*¢-2% Type Ia, 16.6*3) % Type I and 4.1*}-5 %
Type Ib/Ic. There are differences that are likely real. While Li et al.
(2011a) find that a finite observing cadence reduces the fraction of
Type Ia SNe in favor of Type II SNe, the effect is modest for the ca-
dence of modern surveys. The most noticeable of these differences
is the larger fraction of Type Ib/Ic SNe. The total ASAS-SN sample
for 2014 to 2020 includes 1655 Type Ia SNe, 166 Type Ib/Ic SNe,
590 Type II SNe, and 12 superluminous SNe.

Figures 3 and 4 show the absolute magnitudes, Mk, of the
supernova host galaxies and the offsets of the SNe from their nuclei
in arcseconds and kiloparsecs. The upper luminosity scale gives
L/L for M, g, = —24.2 mag (Kochanek et al. 2001). As found
in Holoien et al. (2019a), amateurs tend to discover SNe at larger
offsets and in more luminous galaxies than ASAS-SN or the other

MNRAS AAA, BBB-CCCC (2022)

professional surveys. For a given observing effort, focusing on lu-
minous star forming galaxies will have the highest yield of SNe and
will create the bias of the amateurs towards finding core-collapse
SNe. While the host luminosity distributions of ASAS-SN and other
professional surveys are essentially identical, ASAS-SN continues
to find more supernova close to the centers of their host galaxies.
During 2018 to 2020, ASAS-SN still has significantly smaller me-
dian offsets in both angular (3”’9 vs 6”"1) and physical (2.5 kpc vs
3.4 kpc) units. Figure 5 shows the median offsets of SNe for each
discovery source per year. While ASAS-SN and amateur median
offsets remain relatively consistent, the other professional surveys
have steadily smaller median offsets, and their median offsets nearly
equal ASAS-SN’s in 2020.

Of the 971 ASAS-SN SNe, 28% (272) came from hosts without
reported redshifts and 2% (19) came from uncataloged hosts or
were hostless. Of the 1457 Non-ASAS-SN SNe, 23% (335) came
from hosts without measured redshifts and <1% (9) came from
uncataloged hosts or were hostless. All SNe in the 2018-2020 sample
came from a cataloged host galaxy. The distribution of redshift by
supernova type of SNe discovered or recovered by ASAS-SN in
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are in blue with similar sub-class distribution to Figure 2

Figure 6 follows the expected trends where the more luminous
Type Ia SNe are found at greater redshifts than core-collapse SNe.
The median for the Type Ia SNe distribution of redshift occurs
at z = 0.030 whereas the median of distribution for Type II SNe
redshift occurs at z = 0.020, and the median redshift for Type Ib/Ic
SNe occurs at z = 0.017. This follows expectations of the magnitude

limited sample where Type Ia SNe are more luminous than core-
collapse SNe on average, so they can be seen further away giving
them a greater redshift.

Figure 7 shows the cumulative histogram of the peak magni-
tudes of SNe discovered by ASAS-SN, SNe discovered or recovered
by ASAS-SN, and all SNe with g < 18 mag. This only includes
SNe with peak magnitudes obtained from the ASAS-SN g-band
light curves. Very bright SNe (mpeqx < 14.5 mag; Holoien et al.
2019a) are most commonly discovered by amateurs or the Distance
Less Than 40 Mpc (DLT40) survey’. ASAS-SN recovers the major-
ity of these very bright SNe. In 2018 to 2020, ASAS-SN recovered
or discovered all SNe of mpeqr < 15 mag, excluding supernova
DLT18aq (SN 2018ivc). This supernova was too close to the nucleus
of the AGN NGC1068 for ASAS-SN’s resolution to differentiate the
two.

We modeled the unbinned differential distribution of g <
18 mag SNe as a broken power law with Markov Chain Monte
Carlo (MCMC) methods, holding the bright SNe slope fixed
to the Euclidean value of 0.6. We find a break magnitude of
Mpreak = 16.74 £ 0.04 mag and a faint slope of —0.66 + 0.08.
This is significantly better than in the V-band sample where
Mpreak = 16.24 +0.11 mag (Holoien et al. 2019a).

The completeness drops rapidly for g > 17 mag. The integral
completeness of the sample is 100% at g = 16.5 mag, 90 + 2% at
g =17.0mag,57+2%atg = 17.5mag,and31+1% atg = 18.0 mag
relative to a Euclidean model. The differential completeness is 100%
at g = 16.5 mag, 47 + 4% mag at g = 17.0 mag, 11 + 1% at
g = 17.5 mag, and 2.6 + 0.4% at g = 18.0 mag. The Euclidean
model modestly underestimates the completeness by not using a
full cosmological model, time dilation, and K-corrections.

4 CONCLUSIONS

We catalog the 1478 bright SNe discovered, recovered, or missed
by ASAS-SN from 2018 to 2020. The complete ASAS-SN sam-
ple starting from 2014 now totals 2427 bright SNe with 971 SNe
discovered by ASAS-SN and 735 SNe independently recovered by
ASAS-SN. With the start of using g-band filters in 2017 and the
complete conversion to g-band in 2018, ASAS-SN’s discovery rate
significantly increased. As the ATLAS and ZTF discovery rates in-
creased, the ASAS-SN discovery rate declined, and there was a large
drop due to COVID-19 in 2020. Amateur discoveries have steadily
dropped where they discovered 34 SNe in 2017 but only about 28
SNe per year from 2018 to 2020. While ASAS-SN still discovers
SNe closer to the nuclei of their host galaxy than the other pro-
fessional surveys or amateurs (Figure 3), other professional surveys
appear to have closed the gap by 2020. With the increase to a limiting
magnitude of g < 18 mag, our sample is complete up to a peak mag-
nitude m 4 = 16.7 mag, 90% complete for mpeqx < 17.0 mag,
and 30% complete for mpeqr < 18.0 mag. This is a significant
increase from the previous V-band catalogs where our sample was
only complete up to m ¢4k = 16.2 mag and only 70% complete for
SNe brighter than m peqi < 17.0 mag (Holoien et al. 2019a).

The primary purpose of the ASAS-SN catalogs is to enable
statistical studies. Until recently, the largest, local statistical sample
of SNe came from the 137 SNe studied in Cappellaro et al. (1999),
the SDSS survey (72 Type Ia SNe at z < 0.15, Dilday et al. 2010),
the Lick Observatory Supernova Search (LOSS; 74 Type la and

7 http://dark.physics.ucdavis.edu/d1t40/DLT40
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106 core-collapse SNe in Li et al. 2011a and 274 Type la and 440
core-collapse SNe in Li et al. 2011b), and 90 Type Ia SNe from
the Palomar Transient Factory (Frohmaier et al. 2019). The local
statistical sample was greatly expanded to 875 Type la and 373
core-collapse SNe from ZTF in Perley et al. 2020 although their
completeness corrections are only approximate. A volume limited
subset of 298 ZTF Type Ia SNe from this sample were analyzed
by Sharon & Kushnir (2022). ASAS-SN has slowly been building
towards such statistical analyses, starting with an analysis of the
Type la supernova rate as a function of stellar mass in Brown et al.
(2019) using 476 Type Ia SNe, and estimates of the volumetric
Type la supernova rate including luminosity functions for major
subtypes of Type Ia SNe in Chen et al. (2022) using 247 Type la
SNe and in Desai et al. (in prep.) using 400 Type Ia SNe. With
this extension to the ASAS-SN catalogs to a statistical sample of
1655 Type Ia SNe and 756 core-collapse SNe, the objective is to
use these samples to do expanded analyses of the Type Ia SNe (rates
and luminosity functions of host properties) and to carry out similar
analyses for the core-collapse supernova sample.
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